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ABSTRACT 

Under nonlinear road pricing (or tolling), the price charged is not strictly proportional to 

the distance travelled inside a tolling area, the generalized travel cost is not link-wise additive, 

and finding a user equilibrium distribution is typically formulated as a complementarity problem.  

The latter is a difficult problem to solve in mathematical programming.  In this report, we use 

piecewise linear functions to determine tolls and show that finding a user equilibrium 

distribution with such functions can be formulated as a convex optimization problem that is 

based on path flows and solvable by traditional algorithms such as simplicial decomposition.  

For area-based and two-part pricing schemes, the tolling function consists of only one linear 

piece and finding a user equilibrium distribution reduces to a convex optimization problem 

formulated in terms of link flows and solvable by any software for linearly constrained convex 

programs. 

To find an optimal pricing scheme, e.g., one that maximizes the social benefit, we 

formulate the problem as a mathematical program with equilibrium constraints, an optimization 

problem that is generally non-convex and difficult to solve.  However, it is possible to use search 

algorithms to find an optimal scheme because the number of parameters in our piecewise linear 

function is few.  To illustrate, we use a coordinate search algorithm to find an optimal two-part 

pricing scheme for a small network with randomly generated data. 



 vi 

EXECUTIVE SUMMARY 

This report describes the following: 

 Procedures/algorithms for predicting traffic patterns in response to charging usage fees for 

particular areas (or tolling areas) in a road network.  The literature on transportation contains 

procedures for similar tasks under the assumption that the usage fee is either based on a 

constant rate (e.g., per vehicle-mile traveled or VMT) or a one time (or access) fee.  The 

procedures in the report allow the fee to be nonlinear, a topic not well-addressed in the 

literature.  For example, 

 The fee can consist of two components, access and VMT fee.  (In economics, this is often 

refers to as two-part pricing. 

 There can be two different fees, one of low road-usage and the other for high. For 

example, the fee for this first 10 miles can be $0.50 per mile and it is $0.75 for each 

additional mile in excess of 10. 

 A procedure/algorithm for determining optimal nonlinear fees.  Again, this topic is not well 

addressed in the literature.  This procedure relies on the procedures for predicting traffic 

discussed above to evaluate congestion or pollution levels inside the tolling areas. 
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CHAPTER 1: INTRODUCTION 

Nonlinear pricing generally refers to a case in which the price or tariff is not strictly 

proportional to the quantity purchased.  Economists have been studying such pricing since the 

discussion of its manifestations in Dupuit (1894) and the later categorization of the phenomenon 

in Pigou (1920). Today, nonlinear pricing is prevalent in many industries.  For example, railroad 

tariffs generally depend on the weight, volume, and distance of each shipment.  However, those 

using full-cars and/or over long distances often receive discounts.  The price per kilowatt-hour of 

electricity is different for different types of users.  Heavy users during peak hours generally pay 

higher rates.  Airlines routinely offer discount tickets for advance purchase, with non-

cancellation restriction, and in competitive markets.  In each of these examples, the average price 

paid per unit varies depending on characteristics of the purchase such as its size, time of usage, 

and restrictions.   

In practice, road pricing is often nonlinear.  The tolls in, e.g., Singapore (Menon et al., 

1993), London (Santos and Shaffer, 2004), and Stockholm (Stockholmsforsoket, 2006) are not 

proportional to the distance travelled inside the tolling areas.  In Stockholm, tolls are also not 

proportional to the number of times a user enters the tolling area.  The amount of tolls paid on a 

given day is limited to SEK 60.  After paying this maximum amount, users can freely enter the 

tolling area for the rest of the day.  For its congestion charge, London offers monthly and annual 

passes to frequent users at an approximately 15% discount.  Similarly, the Dulles Greenway’s 

VIP Frequent Rider Program gives rebates to users with high mileage.  During phase I of its 

Value Pricing Project on Interstate 15, San Diego sold $50 monthly permits that allow single 

occupancy vehicles to use lanes reserved for high occupancy vehicles.  (During phase II, the 

permits were replaced by tolls.)   

Despite its widespread use, the literature on nonlinear road pricing is limited.  De Borger 

(2001) proposes a discrete choice model to study optimal two-part tariffs in the presence of 

externalities.  In their nonlinear pricing study, Wang et al. (2011) consider three questions: which 

nonlinear pricing scheme (among the five they consider) is most profitable, how does the most 

profitable choice depend on congestion, and does usage-only pricing necessarily denominate 

other nonlinear schemes if congestion is severe?  Both De Borger (2001) and Wang et al. (2011) 

opine that nonlinear pricing has been largely overlooked in the literature.  Separate from the 

previous two papers, Gabriel and Bernstein (1997a) formulate the problem of finding a user 

equilibrium (UE) distribution on general road networks (or, more simply, the UE problem) when 

travel costs are not link-wise additive as a nonlinear complementarity problem or NCP.  In their 

formulation, one component of the path travel cost is a nonlinear function of its travel distance.  

To solve their UE problem, Gabriel and Bernstein (1997a) propose an algorithm based on 

nonsmooth equations and sequential quadratic programming (see also Gabriel and Bernstein, 

1997b).  Lo and Chen (2000) consider a similar problem and convert their NCP into an 

unconstrained optimization problem based on a merit function.  More recently, Agdeppa et al. 
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(2007) modify the model in Gabriel and Bernstein (1997a) by introducing a disutility function 

and formulate the problem as a monotone mixed complementarity problem instead.  Maruyama 

and Harata (2006) and Maruyama and Sumalee (2007) propose an algorithm for area-based 

pricing, one form of nonlinear pricing.  The authors of the last two papers observe that area-

based pricing is not link-wise additive and it may be intuitive to conclude that there exists no 

equilibrium condition based on link flows.  As demonstrated below, this intuition is incorrect.  

This report considers nonlinear pricing in the context of managing travel demand, 

reducing congestion, and, perhaps, lessening the environmental impact in a tolling area. 

Although it is common to assume that a tolling area consists of connected roads or roads in a 

connected geographical area, such an assumption is unnecessary.  For example, a tolling area can 

consist of not necessarily connected roads or highways that are under the jurisdiction of a single 

entity (a government agency or private company).  It is also possible to let the tolling area be the 

entire road network and every road user must pay tolls.  Doing so reduces our problem to the one 

addressed in Gabriel and Bernstein (1977a). 

In this report, the amount of toll that users pay,     , varies nonlinearly with    the 

distance travelled inside the tolling area.  (Henceforth,      is also referred to as the tolling or 

pricing function.)  We assume that      is piecewise linear and the number of linear pieces is 

two or less.  As observed in Wilson (1993), a piecewise linear function with a small number of 

linear pieces is easier to understand, thus more practical, and can realize most of the advantages 

of general nonlinear pricing functions.  As demonstrated below, the UE problem with piecewise 

linear pricing functions reduces to an optimization problem that is similar to the standard UE 

problem (see, e.g., Florian and Hearn, 2003) and solvable by well-known algorithms such as 

simplicial decomposition.  For area-based and two-part pricing schemes, both user equilibrium 

conditions and the UE problem can be formulated in term of link flows despite the fact that the 

generalized cost is not link-wise additive.  Solving the link-based UE problem eliminates the 

need to maintain information about individual paths and typically requires less computational 

resources.  In fact, the UE problem with area-based and two-part pricing schemes can be solved 

by any software for linearly constrained convex programs. 

To our knowledge, there has been little or no attempt to find an optimal nonlinear pricing 

scheme for a general road network.  To find an optimal scheme, De Borger (2001) assumes that 

the travel demand is measured in kilometres without an explicit road network.  Similarly, Wang 

et al. (2011) consider a network with only one link.  In this report, we formulate the problem of 

finding a nonlinear pricing scheme that, e.g., maximizes the social benefit as a mathematical 

program with equilibrium constraints.  We demonstrate that such a problem can be solved using 

a search algorithm when the tolling function is piecewise linear. 

For the remainder, Chapter 2 describes the pricing functions considered in this report.  

Chapter 3 defines our notation and states path-based UE conditions for later reference.  Chapter 4 
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formulates the UE problem in terms of path flows and modifies simplicial decomposition to find 

a UE flow-demand pair under our nonlinear pricing functions.  Chapter 5 states link-based UE 

conditions and discusses when these conditions are equivalent to those based on paths. Chapter 6 

presents a search algorithm for finding optimal pricing parameters, e.g., those that maximize the 

social benefit.  Finally, Chapter 7 studies numerical results from a small road network with 

randomly generated data and Chapter 8 concludes the report.  To illustrate the simplicity of using 

link-based conditions and problems, the Appendix gives a version of the Frank-Wolfe algorithm 

(a well-known algorithm for linearly constrained convex programs) for solving the UE problem 

with two-part pricing. 
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CHAPTER 2: NONLINEAR PRICING FUNCTIONS 

The tolling function,     , in this report is of the form: 

     {
                      
     

 

where                             and                            .  Recall 

that   is the distance travelled inside the tolling area. (Herein, distances are measured in miles 

and we refer to a rate or fee based on miles travelled as a “VMT fee”, where VMT is an 

abbreviation for “vehicle-mile travelled.”) In both         and        ,    and    are 

nonnegative VMT fees. Typically,    and    are nonnegative.  However, one may be negative to 

reproduce some tolling functions in practice more accurately.  (See the discussion about three-

part tariffs below.)    

Both         and         are piecewise linear functions with two linear pieces.  

Although the number of linear pieces can be larger, i.e.,                         

      and                              , where    , we set     in this report 

for two reasons.  First, the results for     can be extended to the cases with larger   without 

much difficulty.  As cautioned in Wilson (1993), the second reason is that large   is often not 

practical.  Pricing functions with many linear pieces generally result in tolling schemes too 

complex for motorists to understand and respond properly.  Moreover, pricing functions with 

only a few linear pieces can typically capture most of the benefits offered by those with many. 

When          and    are chosen appropriately,         and         capture 

common nonlinear pricing functions in the economics and road pricing literature (see, e.g., 

Wilson, 1993 and Wang et al., 2011).  Figure 2.1 displays tolling functions based on        .   

 
Figure 2.1: Pricing functions based on         
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In case (a), the VMT fee for a longer distance (  ) is smaller than the one for a shorter distance 

(  ), i.e., heavy road users receive discounts.  Case (b) allows users to either pay a VMT fee at a 

rate    or a fixed fee,   , for unlimited travel inside the tolling area. The former is more 

economical when the travel distance is sufficiently short, i.e., less than the point where       .  

Although both cases may be suitable for many industries, it is not clear that they would be 

adopted for congestion mitigation.  

 
Figure 2.2: Pricing functions based on         

For the pricing functions based on         in Figure 2.2, case (a) requires users to pay 

two fees.  One is an access fee (  ) and the other is a VMT fee (   .  Economists commonly 

refer to this form of pricing as a two-part tariff or pricing scheme.  Similarly, the function in case 

(b) also consists of an access and VMT fee.  However, the latter only applies when the travel 

distance exceeds a threshold, a point where          .  (When    and    are fixed,    may 

need to be negative to achieve a desired threshold value.)  In economics, some refer to case (b) as 

a three-part tariff.  Instead of giving discounts to heavy users, case (c) discourages heavy road 

usage by charging a higher VMT fee      when the travel distance exceeds a threshold, a point 

where                .  Finally, the pricing function for case (d) is suitable for area-based 

pricing (see, e.g., Maruyama and Sumalee, 2007), a tolling scheme under which users can enter 
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an access fee,   .  (Area-based pricing is different from cordon pricing.  For the latter, users 

generally pay a fee each time they enter the tolling area.)  In addition to those shown in the two 

figures, setting      , and    to zero reduces      to linear pricing, i.e.,         . 
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CHAPTER 3: PATH-BASED USER EQUILIBRIUM CONDITIONS UNDER 

NONLINEAR PRICING 

This chapter states UE conditions under nonlinear pricing using path flows.  Doing so 

allows us to define our notation and provide information for discussion in subsequent chapters. 

Let   be the set of links (or arcs) in the road network.  A link in   is denoted as   or a 

pair      , where   and   are nodes corresponding to the start and end of a road segment.  For 

travel demands,   denotes the set of origin-destination (OD) pairs and    is the demand for OD 

pair    .  Associated with each OD pair, there is an inverse demand function   
     .  

Additionally,     
| |

 and          
| |

 are vectors of these demands and their inverse 

functions, respectively. (Herein, the bold typeface indicates vectors of variables or functions and 

the plus sign in the subscript indicates that each component of the vector is nonnegative.)  

To satisfy demands,    denotes the set of all possible paths for OD pair  .  Then,   
  

represents the number of travellers using path      and   is a vector of these path flows.  

Then, the set of all feasible flow-demand pairs,      , can be described as follows: 

   {      ∑   
 

    

      
                  }  

In words,       is a feasible flow-demand pair if the sum of the flows on all paths connecting 

the origin of OD pair   to its destination equals    and both   and   are nonnegative.  It is also 

convenient to refer to a flow-demand pair as      , where   a vector of the aggregate link flows, 

  .  By letting       if arc   is on path   and       otherwise, it is possible to describe    

as follows: 

   {          ∑ ∑      
 

     

 ∑   
 

    

      
                  }  

We use both definitions of    interchangeably throughout this report and refer the elements of 

   either as       or      . 

Associated with each arc, there is a travel time or link performance function,      , and 

        
  is a vector of these functions, where   is the cardinality of   and the “++” sign in the 

subscript indicates that each component of the vector is positive.  In addition,    denotes the 

length of arc   and    > 0 for all    .  For tolling,   is partitioned into two subsets,    and   , 

where the former contains links inside the tolling area and the later consists of those outside.  By 

definition,          and        .  As mentioned previously, arcs in    need not be 

connected.  Similarly,    is divided into two subsets:     and    .  The former,    , consists 
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of paths containing arcs in    and using these paths requires paying tolls.  In general, paths in 

    contain links in both    and    to connect the origin of OD pair   to its destination.  On the 

other hand, paths in     contain no link in    and are thus toll-free.  Given a pricing function 

    ,          is in tolled UE if the following conditions hold: 

 ( ∑      
    

)  ∑         

   

   
             

                                

 ( ∑      
    

)  ∑         

   

   
            

                

∑         

    

   
             

                

∑         

    

   
            

                

 

In (3.1),     
       denotes the set of utilized toll paths with respect to         , i.e., 

    
                

         .  Similarly,    
       in (3.2) is the set of paths not 

utilized and    
                

         .  In (3.3) and (3.4),     
       and 

   
       are similarly defined for toll-free paths.  The expression on the left hand side of (3.1) 

and (3.2) consists of the toll amount and travel time for path      .  (In this report, tolls are 

measured in units of time.)  Because paths in     are toll free, their costs or the summations on 

the left hand side of (3.3) and (3.4) consist solely of travel times.  In words, (3.1) and (3.3) state 

that, at equilibrium, all utilized paths (toll or not) must have the same generalized cost that equals 

to the value of the inverse demand function evaluated at the “realized” demand   .  Conditions 

(3.2) and (3.4) imply that the costs of those not utilized cannot be lower than   
      .  

When      is nonlinear, the generalized cost expressions on the left hand side of 

conditions (3.1) and (3.2) are not link-wise additive and it may be intuitive to conclude that 

tolled UE conditions based on link flows do not exist (see, e.g., Maruyama and Sumalee, 2007).  

However, results in Chapter 5 show otherwise. 

To simplify our presentation and highlight key ideas, assume that       is a function only 

of   , i.e., the Jacobian of      is diagonal.  Under this assumption, finding a toll-free 

equilibrium flow-demand pair reduces to a convex optimization problem.  An extension to, e.g., 

the case with an asymmetric and positive definite Jacobian is straightforward and generally 

involves finding solutions to variational inequalities or VIs (see, e.g., Florian and Hearn, 2003, 

and Patriksson, 1994).  In addition,   
      is assumed to be non-increasing and     

      

         

Henceforth, we assume that      is based on        , a function more suitable for 

managing travel demand, reducing congestion, and lessening the environmental impacts.  
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Although most discussion and many results herein extend in an obvious manner to the case with 

       , the resulting optimization problems and VIs generally minimize a non-convex 

objective function and are defined with functions whose Jacobians are indefinite, respectively.  

Solving such optimization problems with, e.g., commercial software may not yield globally 

optimal solutions and VIs with indefinite Jacobians are not well solved (see, e.g., Facchinei and 

Pang, 2003). 
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CHAPTER 4: FINDING AN EQUILIBRIUM FLOW-DEMAND PAIR 

USING PATH FLOWS 

This chapter assumes that      is based on         defined in Chapter 2 and modifies 

traditional algorithms such as simplicial decomposition (see, e.g., von Hohenbalken, 1977, 

Lawphongpanich and Hearn, 1984, Hearn et al., 1987, and Patriksson, 1994) to find a UE flow-

demand pair.  This is advantageous for two reasons.  The underlying concepts in traditional 

algorithms are well understood and, as demonstrated below, they work well when      is 

defined with        .  The former also makes the software development easier because existing 

computer programs for traditional algorithms can be modified to include nonlinear pricing. 

For each path     , its travel distance inside the tolling area, ∑          , is fixed.  

Thus, the toll,   , for path   is also fixed.  Specifically,              and    

  ∑            is nonnegative for all      .  Then, the tolled user equilibrium (TUE) 

problem, i.e., the problem of finding a UE flow-demand pair with a given pricing function     , 

can be formulated in terms of path flows as follows: 

       ∑ ∫        
  

    

 ∑ ∫   
       

  

    

 ∑ ∑     
 

       

    ∑   
 

    

          

   ∑ ∑      
 

     

     

  
             

 

Without the last term in the objective function, the above problem reduces to a problem for 

finding a (toll-free) UE flow-demand pair when demands are elastic (see, e.g., Florian and 

Hearn, 2003).  Under the assumptions stated at the end of Chapter 3, the functions in the first and 

second summations in the objective are convex.  The last summation calculates the toll revenue 

and is linear with respect to   
 , the path-flow variables.  The two main sets of constraints ensure 

feasibility and convert path flows into aggregate link flows.  Moreover, the Karush-Kuhn-Tucker 

or KKT conditions (see, e.g., Bazaraa et al., 2006) are both necessary and sufficient for TUE 

because it is a linearly constrained convex program. Using the fact that      ∑            and 

               , it is relatively simple to demonstrate that the KKT conditions for 

TUE reduce to (3.1) – (3.4).  Thus, an optimal solution to TUE is a UE flow-demand pair under 

the pricing function     . 

Below is a version of simplicial decomposition (SD) that generates the necessary paths 

between every OD pair.  (For other variations, see, e.g., Lawphongpanich and Hearn, 1984, and 

Hearn et al., 1987.)  Briefly, the algorithm starts with a zero flow-demand pair in Step 1 (i.e., 
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there is no travel demand initially) and solves an optimization problem to generate new paths in 

Step 2 for all OD pairs.  In Step 3, the algorithm stops when paths generated in Step 2 cannot 

further reduce the objective value of TUE.  If the algorithm does not stop, Step 4 adds paths from 

Step 2 to   , the set of indices associated with the generated paths for OD pair  .  Typically, 

          .  In Step 5, the algorithm solves an approximate version of TUE in which    

is replaced by    and returns to Step 2 where the process repeats. 

Simplicial Decomposition for TUE 

Step 1: Set               and    .  For each OD pair  , set       and     . 

Step 2: For each OD pair  , let         solve the following (sub)problem and    denotes its 

optimal objective value: 

      ∑         
 

   

   

          

∑   
 

    

    

   
    ∑     

 

    
   

   
    ∑     

 

    
   

           
            

 

Step 3: If      
     

         , stop and the current solution         is a tolled UE flow-

demand pair.  Otherwise, go to Step 4. 

Step 4: For each OD pair   such that      
     

    , set        
             

          and        . 

Step 5: Let             solve the (master) problem below, set      , and return to Step 2. 

   ∑ ∫        
  

    

 ∑ ∫   
       

  

    

 ∑ ∑     
 

       

    ∑   
 

    

          

   ∑ ∑      
 

     

     

  
             

 

In the above, Step 1 uses a zero flow-demand pair to initialize the algorithm.  

Subsequently, the link travel times,       , in the subproblem in Step 2 (or, more descriptively, 

the path-generation problem) are free-flow travel time during the first iteration, i.e., when    .  
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For each OD pair, the subproblem finds a path with the least generalized cost.  The first 

summation in the objective function computes the path travel time and    is the toll amount.  In 

the first constraint,   is the node-arc incidence matrix of the road network and       is an 

(input-output) vector with exactly two non-zero components.  The component corresponding to 

the origin node of the OD pair   contains a “1” and the one for the destination contains a “  .”  

Thus, the first constraint balances the flows into and out of each node. The binary variable    in 

the second constraint indicates whether to pay tolls and   is a sufficiently large positive 

constant, e.g.,   |  |   .  Setting      forces   
  to be zero for all     , i.e., the path 

does not enter the tolling area.  With      and   
         , the left-hand sides of the next 

two constraints (the 3
rd

 and 4
th

 constraints) reduce to zero.  Consequently,    must be zero to 

minimize the objective function and the path associated with    is toll-free.  When     ,   
  

for      are allowed to be one, i.e., the path can use links in the tolling area, and the 

combination of the 3
rd

 and 4
th

 constraints ensure that 

   {     ∑     
  

    
     ∑     

 

    
}      

As before, the inequality “ ” in the above expression must hold at equality to minimize the 

objective function, i.e.,    is the toll amount associated with   . 

The stopping criterion in Step 3 ensures that all paths, i.e., those in the current set    and 

otherwise, cost no less than   
     

  .  This implies that no path can lead to a smaller objective 

value.  Then, the fact that         solves the master problem ensures, via its KKT conditions, 

that the solution satisfies the tolled UE conditions.  Also, it is more practical to replace the 

stopping criterion in Step 3 with          
      , where   is a sufficiently small positive 

constant, e.g.,       . 

Step 4 adds an additional path to the set    and performs the necessary updates.  Finally, 

the master problem in Step 5 is a convex optimization problem with linear constraints, a class of 

problems relatively easy to solve.  As mentioned previously, the master problem is also an 

approximation of the TUE problem. 

The above SD algorithm converges to an optimal solution in a finite number of iterations.  

The argument is similar to those in the literature (see, e.g., Lawphongpanich and Hearn, 1984) 

and follows from three facts.  First, the number of paths without cycles is finite.  (Recall that we 

assume that the link performance function       is positive for all    .  Thus, the solutions to 

the problem in Step 2 must correspond to paths without cycles.)  Second, because SD never 

eliminates paths from   , new paths generated in Step 2 must be distinct from those in the 

current   .  Finally, the optimal objective value of the master problem strictly decreases at the 

end of every iteration prior to termination because newly added paths in Step 4 satisfy    

  
     

    , i.e., a condition that ensures a decrease in the objective value. 
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4.1. Solving the path generating problem in Step 2 

Consider the path-generating problem (PG) in Step 2.  Although it is possible to solve PG 

as a single problem, our numerical experiments indicate that it is more efficient to obtain an 

optimal solution to PG by solving two smaller problems for each OD pair, one contains binary 

variables and the other does not.  Solving these two problems is akin to solving PG twice, once 

using the tolling area (    ) and another not using it (    ).  Then, the better of the two 

optimal solutions is the solution to PG. 

When     , the third constraint in PG becomes ∑   
       .  When   is 

sufficiently large, the constraint is never binding and can be eliminated.  Consequently, PG 

reduces to the following: 

            ∑         
 

   
   

          

     ∑     
  

    
   

     ∑     
  

    
   

  
            

 

The above problem can be viewed as a generalization of a shortest path problem with two 

side constraints (see, e.g., Ahuja et al., 1993), a NP-complete problem.  When compared to other 

NP-complete problems, our numerical experiments indicate that commercial software such as 

CPLEX (IBM, 2009) can solve          efficiently because the 2
nd

 and 3
rd

 constraints can be 

satisfied easily.  For any binary    feasible to the first constraint, setting            

  ∑     
 

          ∑     
       yields a pair         feasible to         . 

For the other case (    ), we partition   into two submatrices,    and   , where    is 

the node-arc incidence matrix for the network induced by arcs in   , where      .  Thus,   

can be written as        .  Similarly, we also partition    as follows: 

   [
  

 

  
 ]  

In the above,   
  is a (sub)vector consisting of variables   

  for     . The similar holds for   
 .  

Under this partitioning, the flow-balance constraint becomes     
      

    .  When     , 

the path cannot enter the tolling area. Thus,   
    and the subproblem in Step 2 reduces to the 

following because the constraints involving arcs in    are irrelevant and thus eliminated: 
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            ∑         
 

    

        
    

  
             

 

Note that    is totally unimodular because it is a submatrix of  , a totally unimodular matrix.  

Thus, basic solutions to     
     are always integral and the binary restriction for   

  is 

unnecessary.  In other words,          can be equivalently written as follows: 

              ∑         
 

    

        
    

  
         

 

Observe that a unit upper bound on   
  is unnecessary in           because    implies that 

there is only one unit of flow in the problem.  Instead of solving PG directly, we solve 

         and           and, between the two solutions, the one with a smaller objective 

value is optimal to PG. 
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CHAPTER 5: LINK-BASED USER EQUILIBRIUM CONDITIONS UNDER 

NONLINEAR PRICING 

This chapter investigates properties under which equilibrium conditions and the UE 

problem can be formulated using link flows.  Below, Section 5.1 discusses one such property that 

relies on the relationship between          and its dual problem.  (Recall that          is a 

problem associated with the PG problem in Step 2 of SD.)  Then, Section 5.2 provides two sets 

of link-based UE conditions.  One is equivalent to (3.1) – (3.4) when          has no duality 

gap and the other is only sufficient.  In Section 5.3, we show that equilibrium conditions and the 

UE problem under area-based and two-part pricing schemes can be stated in terms of link flows. 

5.1. Lagrangian Dual Problems 

In this and subsequent sections, we remove the iteration index,  , from         because 

it is irrelevant.  The problem is well defined for any   such that, for some travel demand vector 

 ,         . 

For a given OD pair  , the Lagrangian dual problem for         can be written as 

follows (see, e.g., Bazaraa et al., 2006):  

           
    

    
  

      
    

   
 

where   
    

    
  , the Lagrangian function associated with        , is defined as follows: 

  
 (  

    
 )     ∑        

 

   

    ∑   
 (     ∑     

 

    

   )

 

   

          

  
             

 

The variables   
 , for       , are Lagrange multipliers constrained to be nonnegative.  In 

literature, some refer to the above problem as a Lagrangian subproblem. 

Let   ̂   ̂   and   ̅ 
   ̅ 

   solve         and      , respectively.  Then, it follows 

from the weak duality theorem (see, Bazaraa et al., 2006) that: 

∑       ̂ 
 

   

  ̂    
 ( ̅ 

   ̅ 
 )  

The result below assumes that the inequality in the above expression holds at equality, i.e., the 

strong duality condition holds or         has no or zero duality gap. 
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Lemma 5.1: If         has no duality gap, then its solution also solves the Lagrangian 

subproblem of      . 

Proof: As discussed above, let   ̂   ̂   and   ̅ 
   ̅ 

   solve         and      , respectively.  

Then, the following must hold: 

∑       ̂ 
 

   

  ̂    
 ( ̅ 

   ̅ 
 )

    {∑        
 

   

    ∑  ̅ 
 (     ∑     

 

    

   )

 

   

          
       }

 ∑       ̂ 
 

   

  ̂  ∑  ̅ 
 (     ∑    ̂ 

 

    

  ̂ )

 

   

 ∑       ̂ 
 

   

  ̂  

 

In the above, the first two equalities follow from the zero duality gap assumption and the 

definition of the Lagrangian function at the optimal dual solution ( ̅ 
   ̅ 

 ), respectively.  Next, 

the first inequality holds because   ̂   ̂   is feasible to the minimization problem.  When 

viewed as an optimal solution to        ,   ̂   ̂   satisfies (     ∑    ̂ 
 

    
  ̂ )    

for      .  Combining the latter with the fact that  ̅ 
   , for      , implies that 

∑  ̅ 
 (     ∑    ̂ 

 
    

  ̂ ) 
     .  Thus, the last inequality must hold.   

The above sequence of equalities and inequalities begins and ends with the same 

expression.  Thus, the two inequalities must be equalities, i.e.,    ̂   ̂   must be optimal to the 

minimization problem, i.e., the Lagrangian subproblem of       associated with ( ̅ 
   ̅ 

 ).  

To make a problem structure more evident, observe that    and   
       , are 

constants with respect to the minimization and the Lagrangian subproblem can be written as 

  
 (  

    
 )  (  

      
   )     ∑        

 

   

        
    

   (  
      

   ) ∑     
 

    

          

  
             

 

In the above,    is unrestricted.  When   
    

   ,   
 (  

    
 )     because setting 

     is optimal.  On the other hand, when   
    

   , the optimal value for    is zero and 

  
 (  

    
 ) is finite.  To maximize the value of   

 (  
    

 ) in problem      , it makes sense to 
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restrict   
  and   

  to the region where   
    

    and   
    

   .  Thus, the Lagrangian dual 

problem for         can be equivalently written as: 

          ̃ 
 (  

    
 )  (  

      
   )

      
    

   

  
    

   

 

where  ̃ 
 (  

    
 ) is a modified Lagrangian function and, because   is totally unimodular, it can 

defined as follows: 

 ̃ 
 (  

    
 )     ∑ (      (  

      
   )  )   

 

    

 ∑        
 

    

          

  
        

 

We also refer to the problem directly above as the modified Lagrangian subproblem.  Because 

      and       are equivalent, it follows from Lemma 4.1 that, if         has no duality 

gap, its solution also solves the modified Lagrangian subproblem and 

∑       ̂ 
 

   

  ̂   ̃ 
 ( ̅ 

   ̅ 
 )  ( ̅ 

     ̅ 
   )  

5.2. Link-based Equilibrium Conditions: General Case 

For a given         , define 

  
     ∑ ∑      

 

        
 

  
     ∑ ∑      

 

        
 

   ∑   
 

     
 

   ∑   
 

     
 

In words,       and       are, respectively, vectors of link flows on toll and toll-free paths 

associated with      .  As constructed,   
                , i.e.,      is the link-flow 

vector associated with toll-free paths.  In the last two equations,    and    are variables 

representing the numbers of users who pay and do not pay tolls for OD pair  , respectively.  For 

every OD pair  , the above vectors and variables satisfy the following linear systems: 
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where, as previously defined,    and    are node-arc incidence matrices for subnetworks 

induced by arcs in the sets    and   , respectively.  

The above motivates a link-based representation of feasible flow-demand pairs based on 

   and   .  In particular, the set of all feasible flow-demand pair can be equilivalently written as 

   {
        ∑        

   
                          

       

                        
}  

Because the value of   
 ,      , is unspecified in the above expression, it is assumed that they 

are always zero, i.e., flows associated with   do not enter the tolling area.  Later, we also refer to 

elements of    in a disaggregate form or as a quadruplet             , i.e., we also define 

   as follows: 

                              
        

                          

For every       in   , there must exist a pair (         ), not necessarily unique, such that 

  
  ∑ ∑      

            ,   
  ∑ ∑      

            , and       ∑   
 

         

∑   
 

        . Moreover, the pair             also belongs to    and such a pair is said to be 

compatible with         .  The theorem below specifies conditions for equilibrium based on 

elements in    or link flows.  Its proof relies on the zero duality gap assumption and the above 

relationship between    and   . 

Theorem 5.2: Assume that         has no duality gap.  Then,          is in tolled UE if 

and only if, for each    , there exist      ,      ,   
 , and   

  such that the following 

link-based conditions hold: 
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(  
      

   )           (  
    

 )                     
        

(  
      

   )           (  
    

 )                     
        

        (  
    

 )                     
        

       (  
    

 )                     
        

(  
      

   )    
      

                        

       (  
    

 )                     
        

       (  
    

 )                     
        

  
      

                        

   
    

                         

 

Proof: For each    , assume that there exist         
 , and   

  satisfying conditions (5.1) – 

(5.9).  Below, we show that, for every OD pair    , the generalized cost of all utilized routes, 

toll or toll-free, equal   
       and the costs of those not utilized are at least as large. 

Consider a toll-free route that is utilized with respect to any pair             compatible with 

        , i.e.,       
            .  If      , then there must be flows on link  , i.e., 

  
      .  Summing together expression (5.6) for all   such that       yields 

  ∑        (       (  
    

 ))
       

 ∑         

   

      
       

  ∑         

   

   
          

where      and      denote, respectively, the origin and destination of OD pair  .  Thus, 

∑               
    and it follows from (5.8) that ∑               

          

  
      .  Thus, the cost of path   equals the value of the inverse demand function at the realized 

demand   .  When a toll-free route   is not utilized, i.e.,      
            , some link on 

route   has no flow, i.e.,   
       for some   such that      .  For arcs satisfying the latter, 

(5.7) indicates that        (  
    

 )    and the following holds: 

  ∑        (       (  
    

 ))        ∑                  
       

  ∑               
   . (5.11) 

From above, ∑               
      

      , i.e., the cost of a non-utilized toll-free path 

cannot be smaller than the value of the inverse demand function.  Thus, among the toll-free 

paths, the utilized ones have costs equal to   
       and those not utilized cannot have a lower 

cost. 

For a toll route       
            , let   

          .  As constructed,    is 

feasible to the modified Lagrangian subproblem associated with  ̃ 
 (  

    
 ) at the end of Section 

5.1. The dual of this subproblem can be written as follows: 
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{
 
 

 
 
     

   

      
    

                                 

  
    

                  

              }
 
 

 
 

 

The hypothesis that         
 , and   

  exist ensures that the above dual problem has a solution.  

Then, it follows from the strong duality theorem in linear programming (see, e.g., Bazaraa et al., 

2010) that  ̃ 
 (  

    
 )    

    and both    and    are optimal to their respective problems.  

Because       and       are equivalent and         has no duality gap,  ̃ 
 (  

    
 )    

    

and the following holds: 

∑        
 

   

      
 (  

    
 )   ̃ 

 (  
    

 )  (  
      

   )    
    (  

      
   )   

In the above,             ∑     
            ∑     

 
           ∑     

 
      

because         is optimal to        .  Replacing    with      ∑     
 

      in the 

preceding equation yields 

∑        
 

   

     (∑     
  

    
)    

    (  
      

   )    
                                    

where the last equality follows from (5.5).  Thus, the cost of a utilized toll path equals   
      . 

When      
            , letting   

          , may not yield an optimal solution 

to the modified Lagrangian subproblem.  When the path is not utilized,    
     may equal zero 

when    
   . For such link      , (5.2) and (5.4) imply that    

 ((  
      

   )            

  
    

 )    and    
 (         

    
 )    , i.e., the complementary slackness condition may 

not hold and    may not solve the modified Lagrangian subproblem at the end of Section 5.1.  

However, because    is still feasible to the subproblem, the weak duality theorem applies and  

∑ (      (  
      

   )  )   
 

    

 ∑        
 

    

  ̃ 
 (  

    
 )    

     

Adding (  
      

   ) to both sides of the above and using (5.5) yields 

∑         
 

   

 ∑   
 (     ∑     

 

    

)

 

   

   
    (  

      
   )    
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Since          ∑     
           ∑     

 
        ∑   

 (     ∑     
 

    
) 

    when 

  
    

    and   
    

   , it follows from above that 

∑        
 

         ∑     
        ∑         

 
    ∑   

 (     ∑     
 

    
) 

      
                            

Thus, if a toll path is not utilized, its cost is no smaller than   
      .  Finally, it follows from 

(5.10) – (5.13) that any pair             compatible with       is in tolled UE. 

For the converse, assume that the flows on toll and toll-free paths are in tolled UE.  For 

      
 (         ),   

          , must solve         because path   must be one 

with the least generalized cost by definition.  The zero duality gap assumption and Lemma 5.1 

imply that    also solves the modified Lagrangian subproblem at the end of Section 5.1.  Then, it 

is easy to show that the optimal dual vector,     associated with the subproblem satisfies (5.1) – 

(5.5) with    
    

   as specified in (5.9).  The similar also holds with       
 (         ) 

            and (5.6) – (5.8). 

There are also link-based equilibrium conditions without relying on the zero duality gap 

assumption.  Typically, they are only sufficient.  For example, the theorem below provides a set 

of such conditions.  Unlike the previous theorem, there are two set of node potentials,    and 

  , for the link flows    
 .   

Theorem 5.3: A pair          is in tolled UE if there exist      , and    such that 

following link-based conditions hold: 

             (  
    

 )                     
         

             (  
    

 )                     
         

        (  
    

 )                     
         

       (  
    

 )                     
         

             (  
    

 )                     
         

             (  
    

 )                     
         

       (  
    

 )                     
         

       (  
    

 )                     
         

         
         

       
                        

       (  
    

 )                     
         

       (  
    

 )                     
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Proof:  For any (         ) compatible with       and       
 (         ), it follows from 

arguments similar to those in Theorem 5.2 that (5.14), (5.16), (5.18), and (5.20) lead to the 

following: 

  ∑      
    

 ∑         

   

   
    

  ∑      
    

 ∑         

   

   
    

Substituting the above expressions for   
    and   

    into (5.22) yields 

   {     ∑      
    

 ∑         

   

      ∑      
    

 ∑         

   

}    
       

   {     ∑      
    

      ∑      
    

}  ∑         

   

   
       

    ( ∑      
    

)  ∑         

   

   
       

Similarly, the following must hold 

    ( ∑      
    

) ∑         

   

   
             

  

∑         

    

   
              

  

∑         

    

   
             

  

Then, the last four equations imply that the costs for all utilized paths, toll-free or otherwise, 

equal   
       and the costs of those not utilized cannot be lower, i.e., the tolled equilibrium 

conditions hold for any             compatible with      .  

5.3. Link-based Equilibrium Conditions: Two-part Pricing 

This section considers two special cases in nonlinear pricing: area-based and two-part 

pricing.  Mathematically, the latter corresponds to setting    and    in the tolling function to 

zero.  Doing so yields                (see case (a) in Figure 2.2).  Additionally, if     , 

then            and two-part pricing reduces to area-based pricing.  The results below 
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demonstrate that         has no duality gap and provide link-based UE conditions for two-part 

pricing. 

Lemma 5.4: If               , where    and    are both nonnegative, then         has 

no duality gap. 

Proof:  For         as given,         reduces to 

           ∑        
 

   

   

          

     ∑     
 

    

   

  
             

 

The Lagrangian dual problem (or        of the above can be written as follows: 

       
 (  

 )      
     

where   
 (  

 )    
         ∑        

 
      

   ∑     
 

              
    . As 

before, we can replace the binary restriction with   
    because   is totally unimodular.  

Observe that the second constraint in         must be hold at equality, i.e., 

     ∑     
 

        in order to minimize the objective function.  Thus,    in the objective 

of         can be replaced by      ∑     
 

     and the problem can be written as  

           ∑        
 

   

      ∑     
 

    

          

  
         

 

Comparing the two equivalent forms of         yields that  

   {∑        
 

   

   }     {∑        
 

   

   ∑     
 

    

}       
     

Thus,   
    is optimal to the Lagrangian dual problem and the objective values of         

and its Lagrangian dual problem are the same, i.e., there is no duality gap.  

Theorem 5.5:  Let               .  Then, a pair          is in tolled UE if and only if 

there exist    and    such the following link-based conditions hold: 
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             (  
    

 )                     
         

             (  
    

 )                     
         

        (  
    

 )                     
         

       (  
    

 )                     
         

     
      

                        

       (  
    

 )                     
         

       (  
    

 )                     
         

  
      

                      

 

Proof: The result follows directly from Theorem 5.2 and Lemma 5.5.  When applying Theorem 

5.2 to the case where               , observe that there is no   
    In addition, the 

argument in Lemma 5.5 shows that   
    solves       in condition (5.9) of Theorem 5.2.  

Observe that (5.26) – (5.33) are the KKT conditions of the following optimization 

problem or the tolled UE problem under two-part pricing (TUE2): 

        ∑ ∫        
∑   

 
 

     

 ∑ ∫        
∑   

    
 

 

     

 ∑ ∫   
       

     

    

                                       ∑   

   

   ∑ ∑     
 

       

            
             

       
              

                   

 

In the objective, the first three terms are convex functions and represent the objective function of 

a problem for finding a (toll-free) UE flow-demand pair when demands are elastic.  The last two 

terms determine the total toll collected in two parts, the access and VMT fee.  The first two 

constraints are flow-balance constraints for users who pay,     and do not pay toll,   .  By letting 

   and    be the multiplier vectors associated with the first two constraints, it is straightforward 

to show that the KKT conditions of the above problem reduce to conditions (5.26) – (5.33). 

Thus, the solution to the above problem yields a UE flow-demand pair       under two-part 

pricing, where    ∑      
    and         . 

As stated above,      involves no path flow (or   
 ) and is a linearly constrained convex 

program, a problem that can be solved by commercial software such as CONOPT (see, e.g., 

Drud et al., 2002).  To illustrate that standard algorithms in the literature with some 

modifications are applicable to     , we state the Frank-Wolfe algorithm as it applies to      

in the Appendix. 
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CHAPTER 6: FINDING OPTIMAL NONLINEAR TOLLING SCHEMES 

For the tolling function based on        , the problem of finding an optimal nonlinear 

tolling scheme can be formulated as follows: 

       ∑ ∫   
       

  

    

       

                                   

        

                           

 

The objective of the above is to maximize the social benefit.  In the constraints, restrictions on 

the four pricing parameters depend on the pricing function of interest.  For example, setting 

     , and    to zero and allowing    to be in the interval      
     yield an area-based pricing 

scheme.  On the other hand, setting    and    to zero and allowing    and    to be in the 

intervals      
     and       

    , respectively, would generate a two-part pricing scheme 

instead.  The remaining constraints ensure that the flow-demand pair is feasible and satisfies the 

tolled UE conditions.  In words,     finds a set of pricing parameters such that the associated 

UE flow-demand pair yields the maximum social benefit.   

As stated,     is a mathematical program with equilibrium constraints (see, e.g., Luo et 

al., 1996), a class of optimization problems generally difficult to solve.  However,     contains 

at most four main decision variablesthe pricing parameters.  The other variables       react to 

or are induced by the pricing parameters via the last two set of constraints.  As such,     can be 

solved approximately using a coordinate search technique (see, e.g., Bazaraa et al., 2006), one 

that sequentially searches for an optimal solution one decision variable (or coordinate) at a time.  

Because the feasible region of     is not convex, search and other algorithms in nonlinear 

programming typically produce locally optimal solutions.  For techniques that yield globally 

optimal solutions, see, e.g., Rinnooy Kan et al. (1989). 

In the coordinate search algorithm below,                  denotes the     problem 

in Chapter 4 with the pricing function based on                           .  The 

algorithm assumes that         
             

             
     and         

    . 

Coordinate Search Algorithm 

Step 1: Set    
    

    
    

             and    . 

Step 2: Let   
    solves the following problem: 

   {∑ ∫   
       

  

    

               
                                   

    
    

  } 
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Step 3:  Let   
    solves the following problem: 

   {∑ ∫   
       

  

    

               
                                

      
       

  } 

Step 4:  Let   
    solves the following problem: 

   {∑ ∫   
       

  

    

               
                                

         
      

  } 

Step 5:  Let   
    solves the following problem: 

   {∑ ∫   
       

  

    

               
                                

      
      

       } 

Step 6:  If ‖   
      

      
      

        
    

    
    

  ‖   , stop and 

   
      

      
      

     solves     approximately.  Otherwise, set       and 

return to Step 2. 

In Step 1, it is also possible to use other values for    
    

    
    

  .  The problems in 

Steps 2 – 5 essentially have only one decision variable, i.e., they can be viewed as line search 

problems and there are many line search algorithms in the literature (see, e.g., Bazaraa et al., 

2006), all of which guarantee a globally optimal solution under some assumptions.  In our 

implementation below, we solve, e.g., the          
    

    
   problem in Step 2 by SD to 

obtain UE flow-demand pairs at 20 equally spaced   -values in the interval      
     and choose 

one whose UE flow-demand pair       yields the best social benefit, i.e., ∑ ∫   
       

  

     

      , as the solution to the problem in Step 2.  The procedures for Steps 3 – 5 are similar.  

The order in which to optimize the pricing parameters in Steps 2 – 5 is heuristic.  Other orderings 

are possible and may lead to a faster convergence.  In Step 6, the algorithm terminates when the 

change between two consecutive solutions is small.  
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CHAPTER 7: NUMERICAL EXAMPLES 

Using GAMS (Brooks et al., 1992), we implemented the SD algorithm in Chapter 4 to 

find tolled UE flow-demand pairs for some nonlinear pricing functions and used the coordinate 

search in Chapter 6 to find the pricing parameters whose associated UE flow-demand pair 

maximizes the social benefit.  The CPU times reported below are from a 2 GHz Dell Computer 

with 2037 MB of RAM.  The network used for all results below is displayed in Figure 7.1 and it 

has 36 OD pairs and a (disconnected) tolling area as shown.   

The travel time function for each link is of the form                      ⁄    , 

where the values of    and    are randomly selected from the intervals (5, 20) and (50, 100), 

respectively.  The demand function for every OD pair is linear, i.e.,             , where    

and    are randomly chosen.  For each      we first choose a demand,     randomly from the 

interval (10, 30) and let   
  and   

  denote, respectively, the free-flow and user-equilibrium travel 

time.  The latter assumes that the demand is fixed and equals   .  Then,    and    are the 

intercept and slope of the line that passes through two points,    
       and (  

     , where   is a 

random number between 2 and 3. 

 

Figure 7.1: Network for area-based pricing 

Table 7.1 displays the information about each iteration of simplicial decomposition for 

the TUE problem with                            .  As explained in Chapter 3, we 

solved         and          instead of the subproblem in Step 2 of the SD algorithm.  On 

average, doing so reduces the CPU time by approximately 30% to 50%.  In addition to the CPU 

times for solving the master and subproblem, the table provides at the end of each iteration the 

origins destinations 

𝜇 

links in the tolling area 
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objective value of TUE, the average number of paths generated for each OD pair, and the 

maximum relative gap among all OD pairs.  Using the notation from the algorithm in Chapter 4, 

the relative gap for OD pair   at the end of iteration   is (     
     

  )   
     

  ⁄ .  For the 

network in Figure 7.1, SD requires only six iterations to find a solution to the TUE problem with 

a small relative gap.  This is similar to the results in Hearn et al. (1987).  

Table 7.1: Simplicial Decomposition for the TUE problem 

   
Max. CPU Times (sec.) 

Iter. Obj. Val. Ave. Path Rel. Gap Master Subproblem 

1 -29842.85 1.00 1.0475 0.01 0.24 

2 -42081.20 1.97 0.5243 0.01 0.28 

3 -45625.04 2.89 0.1819 0.02 0.51 

4 -46135.80 3.72 0.1334 0.03 0.99 

5 -46317.35 4.06 0.0016 0.03 0.96 

 

We also used the coordinate search algorithm to find the best parameters for two-part 

pricing, i.e.,               , where            and           . (See case (a) in Figure 

2.2.) We solved the TUE problem using SD and each iteration of the coordinate search for two-

part pricing does not require Step 4 and 5 because    and    are zero.  

As displayed in Table 7.2, the coordinate search algorithm requires only four iterations to 

terminate with approximately 27544 in social benefit.  We surmise that the efficiency of the 

coordinate search is due in part to the form of the social benefit as a function of    and    shown 

in Figure 7.2.  Although non-convex, the function in this figure is unimodal and well suited for 

the coordinate search.   

Table 7.2: Coordinate search of two-part pricing 

Iter.       Social Benefit CPU (sec.) 

1 38 0.1 27379.62 8.54 

2 34 0.2 27512.64 3.27 

3 32 0.2 27544.09 2.42 

4 32 0.2 27544.09 2.45 

 

Observe that the first search iteration in Table 7.2 requires significantly more CPU time 

than the rest and the social benefit of the last (or 4
th

 ) iteration is the same as one in the third.  

During the first search iteration, evaluating the social benefit at a particular set of pricing 

parameters requires solving a TUE problem with SD, an algorithm that must generate paths for 

every OD pair if suitable ones are not available.  These paths are saved and used in later search 

iterations, during which saved paths are often sufficient for finding a UE flow-demand pair.  
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Thus, later search iterations are typically less intensive computationally.  In iteration 4, the 

algorithm essentially verifies that the stopping criterion in Step 6 is satisfied.  

 
Figure 7.2: Social benefit from two-part pricing as a function of    and    

For comparison, Table 7.3 displays the results from using the coordinate search algorithm 

to find the best parameters for three-part pricing, i.e.,                    .  (See case (b) in 

Figure 2.2.)  Not counting the last iteration whose purpose is to verify the stopping criterion, it 

took the search algorithm only one iteration to produce a solution.  On average, the CPU times in 

Table 7.3 are significantly larger than those in Table 7.2 because          for three-part 

pricing contains binary variables.  On the other hand, three-part pricing achieves a slightly higher 

social benefit, approximately 27802, than two-part pricing.  

We also used the search algorithm to find the best parameters when         

               .  The search took more CPU times and did not yield a social benefit better 

than the one from three-part pricing.  This suggests that a more complex pricing structure may 

not be beneficial for the network in Figure 7.1. 

Table 7.3: Coordinate search of three-part pricing 

Iter.       Social Benefit CPU (sec.) 

1 1.2 38 27801.66 22.06 

2 1.2 38 27801.66 36.63 
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CHAPTER 8: CONCLUSIONS 

This report considers the case where the amounts of toll that users pay varies nonlinearly 

with the distance they travel inside a tolling area.  Instead of allowing any nonlinear function to 

represent the toll amount, this report assumes that the tolling function is piecewise linear.  

According to Wilson (1997), piecewise linear functions can realize most of the advantages of 

general nonlinear functions.  Moreover, when the number of linear pieces is small, piecewise 

linear functions are more practical because they are easier to understand.  Technically, piecewise 

linear functions lead to a UE problem that can be formulated as a convex program and solved 

using simplicial decomposition.  When the zero duality gap assumption holds (e.g., as in the case 

of two-part pricing), link-based UE conditions exist and the UE problem can be stated using link 

flows.  This eliminates the need to maintain information about individual paths and lessens the 

computational resources required to, e.g., solve the UE problem.  To illustrate, we implemented a 

coordinate search algorithm and used it to find pricing functions that maximize the social benefit.  

A small road network with randomly generated data is used to empirically show how the 

algorithms behave. 
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APPENDIX 

This appendix presents a modification of the Frank-Wolfe algorithm for solving the tolled 

UE problem with two-part pricing or     .  For linearly constrained convex programs, the 

Frank-Wolfe algorithm begins with an initial feasible solution, finds an improving feasible 

direction by solving a linear program that approximates the original problem, and performs a line 

search along the direction found to obtain an improved solution.  In theory, the algorithm repeats 

these steps until it finds a feasible solution for which no improving feasible direction exists.  

When applied to the toll-free UE problems in the literature, finding an improving feasible 

direction reduces to solving a shortest path problem for each OD pair.  The similar is true when 

applied to     .  Instead of one, the algorithm below solves two shortest path problems for each 

OD pair, one to obtain a path using the tolling area and the other to find one that bypasses it 

instead. 

The algorithm below applies the Frank-Wolfe algorithm to      with the assumption 

that   
          , i.e.,    is the maximum demand for OD pair  . 

Frank-Wolfe Algorithm for TUE2 

Step 1: Let                  and set    . 

Step 2: Let   ̂  ̂  ̂  ̂  solve the following (sub)problem: 
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Step 3: If the following holds, stop and               is optimal   Otherwise, go to Step 4. 

∑      
          ̂    

  

    

 ∑         ̂    
  

    

 ∑    ̂    
  

   

           ̂        

where          and  ̂   ̂    ̂. 

Step 4: Let          solve the following one-dimensional problem: 
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Set                           ̂  ̂  ̂  ̂                      and 

     .  Return to Step 2. 

It is possible to let                         in Step 1.  Problem       in Step 2 is a 

linear program that approximates      around the current solution              .  The first 

two constraints in       balance the flows at each node for paths that use and do not use the 

tolling area, respectively.  The third set of constraints ensures that the demands for toll and toll-

free routes do not exceed the maximum for each OD pair.  Equivalently,       can be written 

as follows: 

          ∑   
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where, for each    , 

  
             {∑      

          
 

   

           
   }  

  
         { ∑      

    
 

    

    
        

   }   

The minimization problems in the definition of   
      and   

      are minimum cost flow 

problems (see, e.g., Ahuja et al., 1993).  Because there is no capacity constraint on any link, 

these minimizations correspond to sending    and    along the least-cost path using and not 

using the tolling area, respectively.   

To solve         evaluate   
      and   

     , i.e., solve two shortest path problems, 

one using the full network and the other bypassing the tolling area, and send    units of flows 

along each route.  Then, the solution to        is, for each  , 

 



 

 35 

  ̂   ̂   {

              
        

         
     

      

            
        

              
        

         
     

      

            
        

              
        

         
     

      

 

Then, the corresponding the optimal solution to       is  

( ̂   ̂   ̂   ̂ )  {

                {  
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(         )      
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           {  
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where    and    are optimal solutions to the minimization problems in   
      and   

     , 

respectively. 

To obtain a more efficient algorithm, it is also possible to modify or extend the above 

algorithm via simplicial decomposition (see, e.g., Lawphongpanich and Hearn, 1984, Hearn et 

al., 1987, and Patriksson, 1994). 

 


